in better than 98% purity by the dehydration of 3,3-dimethyl-1-butanol over this catalyst. Previous methods of dehydrating this alcohol were accompanied by appreciable rearrangement.⁵

The mechanism suggested here seems to be the most reasonable. However, one involving participation by a neighboring group is not excluded.⁶

Further work with these and other alcohols and with bases other than ammonia and the study of the details of the mechanism are currently being carried out.

(5) V. N. 1patieff, W. W. Thompson and H. Pines, THIS JOURNAL, 73, 553 (1951).

(6) S. Winstein, B. K. Morse, E. Grunwald, K. C. Schreiber and J. Corse, *ibid.*, **74**, 1113 (1952), and other papers in that series.

The Ipatieff High Pressure and Catalytic Laboratory Northwestern University Herman Pines Evanston, Illinois C. N. Pillai

Received March 14, 1960

THE BIOSYNTHESIS OF TETRACYCLINE ANTIBIOTICS

Sir:

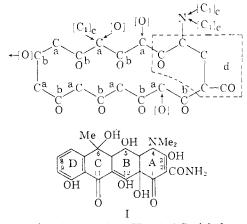
Inspection of the formulas of tetracycline antibiotics, *e.g.*, oxytetracycline, I, suggests that a considerable part of the molecule may arise biosynthetically by the acetic acid route,^{1,2,3} with the probable introduction of one methyl group bonded to carbon and two methyl groups bonded to the amino nitrogen group.

The first experimental support for this idea was provided by Snell, *et al.*,² who showed that sodium acetate-2-C¹⁴ was a fermentation precursor (incorporation 5–10%) by a fairly direct route, since the specific activity of the product was directly proportional to the quantity of tracer added. Degradation² showed less activity in ring A than in rings B, C and D. Glutamate has been found to be a unique amino-acid source of oxytetracycline in a semi-synthetic medium, and addition to a fermentation of (±)glutamic acid-2-C¹⁴ gave an active oxytetracycline. Degradation of the product showed that terracinoic acid (from rings B, C, D) contained only 5% of the activity, suggesting that glutamate may be a fairly direct precursor of part at least of ring A.³

Detailed degradations have now been carried out on oxytetracycline derived from (i) $C^{14}H_3$ methionine and (ii) $2-C^{14}H_3CO_2H$. (i) Oxytetracycline (r.m.a.⁴ 50.9 × 10³) gave by Kuhn-Roth oxidation CH₃CO₂H (r.m.a. of BaCO₃ from the CH₃ group, 17.3 × 10³; r.n.a. of BaCO₃ from the CO₂H, 0) and by standard degradation⁵ to tetramethylammonium iodide (r.m.a. 34.8 × 10³). All the activity, as expected, is in the C₆-CH₃ and the N(CH₃)₂, the activity of all CH₃ groups being the same. (ii) Oxytetracycline (r.m.a.

(1) A. J. Birch, Fortschr. Chem. Org. Naturstoffe, Springer, Vienna, 14, 186 (1957); R. Robinson, "Structural Relations of Natural Products," Oxford Press, New York, N. Y., 1955.

(2) J. F. Snell, R. L. Wagner and F. A. Hochstein, "Internat. Conf. on Peaceful Uses of Atomic Energy," **12**, 431 (1956).


(3) J. F. Snell, in "Radioactivity for Pharmaceutical and Allied Research Laboratories," Academic Press, Inc., New York, N. Y., in press.

(4) Relative molar activity, proportional to molar activity cf.*

(5) F. A. Hochstein, C. R. Stephens, L. H. Conover, P. P. Regna, R. Pasternak, P. N. Gordon, F. J. Pilgrim, K. J. Brunings and R. B. Woodward, THIS JOURNAL, **75**, 5455 (1953), and references cited therein. 42.2 \times 10³) from C¹⁴H₃CO₂H after degradations⁵ gave products with these r.m.a. \times 10⁻³: terracinoic acid, 27.1; 7-acetoxy-3-methylphthalide 18.7; decarboxyterracinoic acid 26.4; BaCO₃ from C₁₁, 0.3; BaCO₃ from C₆, 4.0; BaCO₃ from C₆-CH₂, 0.3; BaCO₃ from C₂-CONH₂, 0.6; tetramethylammonium iodide, 0.5.

These results are quantitatively in accord with the production of the molecule by the head to tail linkage of acetic acid units at least from C_{δ} - C_{12} (except C_6 -CH₃). It is necessary to assume that the incorporated unit from C¹⁴H₃CO₂H has its activity randomized to the extent of 5% and that the methyl-pool has become slightly labelled from this source. It is likely that the glutamate portion extends from the C₂-CONH₂, which is differently labelled to an acetate carboxyl, through C_2 to C_{4a}. Degradations to deal with this part of the molecule are inefficient.

The results are in accord with the distributions of label shown in I: (i) r.m.a. contributions of a, b, d = 0, $c = 17.3 \times 10^3$; (ii) r.m.a. contributions of $a = 4 \times 10^3$; $b = 0.3 \times 10^3$; $c = 0.25 \times 10^3$; with glutamic acid-2-C¹⁴ as source the r.m.a. contribution of d is much greater than a, b and c.

We are indebted to Dr. Herchel Smith for assistance with some of the tracer measurements; financial aid from the Rockefeller Foundation and Chas. Pfizer & Co., Inc., supported parts of the work.

(6) A. J. Birch, R. A. Massy-Westropp, R. W. Rickards and H. Smith, J. Chem. Soc. (London), 360 (1958).

RADIOBIOCHEMISTRY DEPARTMENT	
Chas. Pfizer & Co., Inc.	J. F. Snell
Brooklyn 6, New York	
THE UNIVERSITY	
MANCHESTER, 13	A. J. Birch
England	P. L. Thomson
RECEIVED MARCH 21 1960	

RECEIVED MARCH 21, 1960

A NEW CLASS OF ACTIVE STEROIDS : THE 19-NOR- $\Delta^{4,9}$ -3-KETOSTEROIDS

Sir:

Since the initial demonstration that Δ^1 -unsaturation of the corticoids results in enhanced biological and therapeutic activity,¹ numerous investigations have been made of other conjugated systems. The $\Delta^{4,6}$ -unsaturated derivatives of the

(1) H. L. Herzog, A. Nobile, S. Tolksdorf, W. Charney, E. B. Hershberg, P. L. Perlman and M. M. Pechet, Science, 121, 176 (1955).

steroid hormones in the 19-methyl-² and 19-nor-³ series have been evaluated, and the $\Delta^{1,4,6}$ -system⁴ also has been reported. We now wish to report the ready synthesis of yet another biologically active class of unsaturated analogs, the 19-nor- $\Delta^{4,9}$ -3-ketosteroids (II).^{5,6}

This unusual, stable conjugated system results directly from one-step bromination of $\Delta^{5(10)}$ -3-ketosteroids (I) in pyridine solution. The pyridine solvent is unique since the intermediate 5,10-dibromo- or 10-bromo- Δ^{4} -3-ketosteroids⁷ in solutions of acetic acid, chloroform, etc., or even in the solid state, decompose to yield predominantly phenolic products.

Treatment of 19-nor- $\Delta^{5,(10)}$ -androsten-17 β -ol-3one (Ia)⁸ with one equivalent of bromine, or, more conveniently, with pyridine perbromide hydrobromide by this new process gives 19-nor- $\Delta^{4,9}$ androstadien-17 β -ol-3-one (IIa), m.p. 187–188°, $[\alpha] D - 290^{\circ}$ (acetate, m.p. 107°, $[\alpha] D - 237^{\circ}$). Chromic acid oxidation of IIa yields 19-nor- $\Delta^{4,9}$ androstadiene - 3,17 - dione (IIb), m.p. 130–131°, which is also obtained directly by bromination (pyridine) of 19-nor- $\Delta^{6(10)}$ -androstene-3,17-dione (Ib). Similar brominations of Ic (m.p. 132–134°), Id⁹ and Ie¹⁰ give the correspondingly substituted 19-nor- $\Delta^{4,9}$ -androstadien-17 β -ol-3-ones, IIc (17 α methyl), polymorphic, highest m.p. 143–145°;

(2) V. R. Mattox, E. L. Woroch, G. A. Fleisher and E. C. Kendall, J. Biol. Chem., 197, 261 (1952).

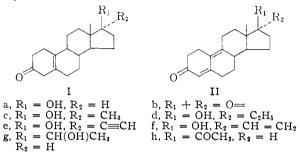
(3) F. B. Colton, U. S. Patent 2,874,170 (1959).

(4) D. Gould, E. L. Shapiro, H. L. Herzog, M. J. Gentles, E. B. Hershberg, W. Charney, M. Gilmore, S. Tolksdorf, M. Eisler, P. L. Perlman and M. M. Pechet, THIS JOURNAL 79, 502 (1957); E. J. Agnello and G. D. Laubach, *ibid.*, 79, 1257 (1957).

(5) This structure has been suggested for a component of the crude oil obtained by dehydration of 19-nor-Δ4-androsten-11β-ol-3,17-dione: A. Zaffaroni, H. J. Ringold, G. Rosenkranz, F. Sondheimer, G. H. Thomas and C. Djerassi, *ibid.*, **80**, 6110 (1958).

(6) Correct analyses have been obtained for all new compounds described with the exception of the non-crystalline material 1Ih for which verifying spectral data have been obtained. The $\Delta^{4,p.3}$ -one system absorbs at 302-4 m μ , $\epsilon = 18,000-21,000$ (ethanol) and at 6.04 $\pm 0.01 \ \mu$ (carbonyl), $6.22 \pm 0.01 \ \mu$ (diene) and $6.29 \pm 0.02 \ \mu$ (diene shoulder) (chloroform).

(7) Interruption of the reaction at a suitably short interval after bromine addition allowed the isolation of these intermediates.


(8) A. L. Wilds and N. A. Nelson, THIS JOURNAL, 75, 5366 (1953).

(9) F. B. Colton, L. N. Nysted, B. Riegel and A. L. Raymond, *ibid.*,
79, 1123 (1957).
(10) D. C. L. H. H. D. D. L. H. 5 755 200 (1057).

(10) F. B. Colton, U. S. Patent 2,725,389 (1955).

IId (17 α -ethyl), m.p. 77-79°; IIe (17 α -ethinyl), m.p. 154-156°, $[\alpha] D - 322°$.

Although selective bronination of the 5(10)double bond is achieved easily when the 17α substituent is acetylenic (Ie), such selectivity is not possible with the 17α -vinyl compound (If). Consequently, two equivalents of bromine are used, and the resulting crude 20,21-dibromo- $\Delta^{4,9}$ -3-keto-steroid is treated with sodium iodideacetone to give 17α -vinyl-19-nor- $\Delta^{4,9}$ -androstadien- 17β -ol-3-one (IIf), m.p. $136-140^{\circ}$. Preferably, IIf is obtained by selective hydrogenation of the ethinyl compound (IIe)(Pd/BaSO₄-pyridine). Ig is also converted to the $\Delta^{4,9}$ -analog and treated with chromic oxide to afford 19-nor- $\Delta^{4,9}$ -pregnadiene-3,20-dione (IIh), which has resisted all attempts at crystallization.

Studies on the chemistry of the $\Delta^{4,9}$ -bisdehydro system and on the chemical and microbiological preparation of additional analogs, particularly in the C_{20} series, are in progress and will be reported shortly.

In general, the biological activity¹¹ of the $\Delta^{4,9}$ series resembles the 19-nor- Δ^4 -compounds. However, there are some marked differences in that IIc, IId and IIf are exceptionally potent oral antiestrogens and IIe is more effective than 17α ethinyl-19-nortestosterone in reducing fecundity in rats.

THE LILLY RESEARCH LABORATORIES	Mel Perelman
ELI LILLY AND COMPANY	Eugene Farkas
INDIANAPOLIS 6, INDIANA	E. J. Fornefeld
	Russell J. Kraay
	RICHARD T. RAPALA
	1000

RECEIVED MARCH 17, 1960

(11) Endocrinological testing was carried out in the Lilly Laboratories (R, J. K.) and will be reported in more detail elsewhere.